
476 

Acta Cryst. (1996). A52, 476-479 

The Locked Translation Function and Other Applications of  a Patterson Correlation 
Function 

LIANG TONG 

Department of  lnflammatory Diseases, Boehringer lngelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 
368, Ridgefield, CT 06877, USA 

(Received 10 September 1995; accepted 23 January 1996) 

Abstract 

Another form of the Patterson correlation function is 
presented. It is based on the overlap of the self vectors 
throughout the entire unit cell. The dependence of this 
overlap on the position of a monomer (of known 
orientation) relative to the center of a non-crystal- 
lographic assembly leads to the definition of a locked 
translation function. This overlap is also dependent on 
the orientation of a search atomic model and therefore 
can be applied to the refinement of rotational param- 
eters. Other possible applications of this correlation 
function are also discussed. 

1. Introduction 

Patterson correlation lies at the foundation of many 
molecular-replacement techniques. Rotation functions 
are based on the correlation of one Patterson map with 
the rotated version of another within a spherical volume 
centered at the origin (Rossmann & Blow, 1962). The 
evaluation of this correlation can take various forms, 
giving rise to, for example, the slow (Rossmann & 
Blow, 1962) and fast (Crowther, 1972; Navaza, 1987) 
rotation functions. Patterson correlation can also be 
applied to the translation problem (Crowther & Blow, 
1967; Harada, Lifchitz, Berthou & Jolles, 1981; Tong, 
1993). The resulting translation function can be 
evaluated much faster than those based on the R factor 
or the correlation coefficient between structure-factor 
amplitudes. 

When the asymmetric unit of a crystal contains a 
macromolecular assembly obeying a point-group sym- 
metry, the orientations of the non-crystallographic 
symmetry (NCS) elements may be determined with an 
ordinary self-rotation function (Rossmann & Blow, 
1962). A locked self-rotation function may be used as 
well, which can determine the orientations of all the 
NCS elements at the same time (Tong & Rossmann, 
1990). If an atomic model for the monomer of the 
assembly is available, its orientation in the crystal unit 
cell can be determined by an ordinary cross-rotation 
function. Alternatively, a locked cross-rotation function 
can b~ used to search for all the molecules of the 

assembly at the same time (Tong & Rossmann, 1990, 
1996). However, a translation function where the 
positions of all the molecules of the assembly are 
searched for at the same time (a 'locked translation 
function') has so far been unavailable. 

Patterson correlation refinement (Briinger, 1990) and 
intensity-based domain refinement (Yeates & Rini, 
1990) have been very useful in optimizing the rotational 
parameters of a search atomic model after a cross- 
rotation-function calculation. The Patterson correlation 
refinement (Brtinger, 1990) is based on the maximiza- 
tion of the correlation coefficient between squared 
normalized observed and calculated structure factors. 
The intensity-based domain refinement (Yeates & Rini, 
1990) is based on the minimization of the differences 
between squared observed and calculated structure 
factors by a least-squares procedure. 

Another form of the Patterson correlation function is 
presented in this paper. This correlation is based on the 
overlap of the self vectors between the model and the 
crystal throughout the entire unit cell. It can be used to 
refine the rotational parameters of a search model as 
derived from an ordinary cross-rotation-function calcu- 
lation. It can also be used to define a locked translation 
function, where the positions of all the molecules of the 
assembly (relative to the center of the assembly) can be 
determined at the same time. 

2. Theoretical background 

Given a molecule (x °) of fixed orientation and at a 
reference position, the calculated structure factor after 
the molecule is translated by x o and placed in the crystal 
unit cell is given by 

FCh = ~ Fh, m exp{2rrih[Tm]xo},  (1) 
m 

where the summation goes over the crystallographic 
symmetry operators and 

Fh, m = ~ fj exp{2rrih([Tm]X ° + trn)} 
J 

= exp(27rihtm)Fh[rm], 1 (2) 
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is the contribution of the mth crystallographic asym- 
metric unit to the structure factor at the reference 
position. The correlation between the observed and 
calculated Patterson maps throughout the entire unit cell 
is given by (Tong, 1993) 

PC(x0) = ~ ~'~(F~)21Fh,ml 2 
h m 

+ ~ ~ ~ (Fg) 2 Fh ,mF~ ,"  
h m n#m 

× exp{-Zrc ih([T ,]  - [Tm])X0}. (3) 

The first term in (3) represents the overlap of the self 
vectors between the search model and the crystal, 
whereas the second term represents the overlap of the 
cross vectors. Equation (3) has generally been used to 
determine the translation vector x o given the search 
molecule with a pre-determined orientation. In such a 
case, the first term in (3) is a constant and is generally 
ignored. 

3. Refinement of rotational parameters 

The correct orientation and position of a search 
molecule in the crystal unit cell should lead to the 
maximal overlap between the observed and calculated 
Patterson maps, i.e. should lead to a maximum of (3). 
The first term in (3) in this case depends only on the 
orientation of the molecule. It may therefore be 
expected that the correct orientation of the search 
molecule should produce the maximal value for this 
term. From (2), it can be seen that the summation over 
the crystallographic symmetry operators can be 
ignored. This leads to the following Patterson correla- 
tion function: 

cross-rotation function (Tong & Rossmann, 1990, 
1996). If Xo is the translation vector that brings the 
correctly oriented search model into the same position 
as the monomer in the standard orientation, 

xj = [FIX~j + Xo. (5) 

Assume that [I,] (n = 1 . . . . .  N) is the set of rotation 
matrices for the NCS point group in the standard 
orientation and [E] is the rotation matrix that brings the 
standard orientation to that of the assembly in the 
crystal. The set of fractional atomic coordinates for the 
assembly centered at the origin of the crystal unit cell is 
given by 

xj, n = [u][E][I,]([F]X~j + Xo) (6) 

(noting that the assembly in the standard orientation is 
centered at the origin). [c~] is the de-orthogonalization 
matrix (Rossmann & Blow, 1962). Similar to the 
derivation of (4), the correct translation vector X0 
should give rise to calculated structure factors that will 
maximize the first term in (3). The locked translation 
function is defined as 

GLTF(Xo)-- ~(Ff,)21~l 2 
h 

: ~ ~ (f~)2lfh,nl 2 
h n 

+ E ~ E (F~) 2 fh,nf~,m 
h n m•n 

x e x p l - 2 r c i h ( [ O m ] -  [0,])Xo}, (7) 

where 

P1PC([p])  - )-'~(F~)2 IFh,112, (4) 
h 

where the summation goes over all reflections. 
This Patterson correlation function can be used to 

refine the rotational parameters of a search molecule. 
The calculated structure-factor amplitude IFh,ll is 
expressed as a function of the orientations and the 
positions of the rigid groups in the search molecule. As 
the calculation is carried out in space group P1, the 
position of the first group may be held fixed. A 
conjugate-gradient least-squares procedure is used to 
find the parameters that maximize this correlation. 

4. The locked translation function 

Given the atomic model Xj°j (in Cartesian coordinates) 
for a monomer of the macromolecular assembly, the 
rotation [F] that brings it into the same orientation as 
that of one of the monomers of the assembly in the 
standard orientation can be determined with the locked 

[o,] = [~][E][/,] ( 8 )  

and 

fh.n "-- ~ f) exp{2:rrih[O,,][F]X~j }. (9) 
J 

The locked translation function therefore determines 
the position of a search molecule (of known orientation) 
relative to the center of the NCS point-group symmetry. 
Once this position is known, the structure of the entire 
assembly, centered at the origin of the unit cell, is given 
by (6). The center of this assembly in the crystal unit 
cell can then be determined with an ordinary translation 
function, using the structure of the entire assembly as 
the search model. 

As can be expected, (7) bears much resemblance to 
(3), by the interchange of the crystallographic quantities 
([Tin], Fh,m) with the NCS quantities ([0,], fh,n)" While 
(3) can be evaluated directly by the fast-Fourier- 
transform (FFT) technique (Ten Eyck, 1973), (7) 
cannot as the elements of the [0,] matrices are generally 
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non-integral. The FFT technique can be applied 
indirectly, however, by carrying out one separate 
transform for each pair of n and m parameters in (7). 
This would require the calculation of N(N-1)/2 
transforms of the type o 2 . • ~h(F~) fh,nfh.m exp(-2:rrthxmn). 
The summation over n and m for each X o can then 
be evaluated by interpolating among the values ob- 
tained from these transforms, noting that 
x,, m = ([0m] - [0n])X 0. Alternatively, (7) can be evalu- 
ated by direct summation, which is much slower but 
may produce better results. Packing of the monomers in 
the assembly can be checked to remove those translation 
vectors that cause steric clashes of the monomers. 

5. Test calculations 

Both applications of this Patterson correlation function 
have been implemented as new options in the program 
GLRF (Tong & Rossmann, 1990, 1996). As both 
functions are expected to be dominated by strong 
reflections, the large-term approach can be applied to 
their calculations (Tollin & Rossmann, 1966). For the 
refinement of rotational parameters, the program first 
treats the entire search model as a rigid body and 
optimizes its orientation. Subsequently, the orientations 
and positions of the individual rigid-body groups in the 
search model, as defined by user input, are optimized. 

For the locked translation function, a locked cross- 
rotation function is calculated first. The program can 
then carry out a locked-translation-function calculation 
for each of the top few peaks in the rotation function. 
The output of the calculation is a list of the peaks in this 
translation function. Translation vectors that cause 
steric clashes of the monomers in the assembly are 
ignored either during the calculation itself or during the 
peak-search process. This packing check is somewhat 
time consuming and is better avoided during the 
calculation by the FFT method. If direct summation is 
used, a packing check should be performed during the 
calculation. To minimize errors from the interpolation, 
the Fourier transforms are sampled with a grid size that 
is ¼ of the highest resolution. The program can also 
output the atomic coordinates for the entire assembly 
based on the locked-translation-function results. This 
model of the complete assembly can then be input to an 
ordinary translation-function program to locate the 
center of the assembly. 

Test calculations with the locked translation function 
are presented in more detail here. The atomic models 
for two structures, deoxy-/34-hemoglobin (entry 1CBL) 
(Borgstahl, Rogers & Arnone, 1994) and asparaginase 
(entry 3ECA) (Swain, Jaskolski, Housset, Rao & 
Wlodawer, 1993), were taken from the Brookhaven 
Protein Data Bank. Both crystals are monoclinic (space 
group P21) with a 222 tetramer in the asymmetric unit. 
Structure factors to 3 A resolution were calculated for 
the crystal with the program TF (Tong, 1993). The 

orientations of the three non-crystallographic twofold 
axes of the tetramer were determined with the ordinary 
self-rotation function and confirmed with the locked 
serf-rotation function. Reflection data between 10 and 
3.5 A resolution were used in all the test calculations 
described here. The large-term cut-off was 1.5, saving 
about 20 % of the reflections. The first monomer in each 
atomic model was re-oriented, centered at the origin. 
and placed in a large P1 cell. Structure factors to 3 A 
resolution were calculated for the monomers in the P1 
cells. The locked cross-rotation functions, calculated 
with the fast rotation function followed by interpolation 
(Tong & Rossmann, 1996), contained one significant 
peak for each model, corresponding to the correct 
orientation. 

A locked cross-rotation search was then carried out 
with the slow rotation function, covering a small region 
around the peak and using 1 ° grid intervals. The top 
peak from this fine search was used for the locked 
translation function. The search region covered - 3 0  to 
30 A in X, Y and Z coordinates, with a grid interval of 
1 A. The minimum and maximum .lengths of the 
translation vector were 10 and 30A, respectively, 
removing 52% of the grid points in the box from the 
calculation. The locked translation function was evalu- 
ated in three different ways - by the FFT method 
without packing check during the calculation, by the 
FFT method with packing check and by direct 
summation with packing check (Table 1). The maxi- 
mum number of C~ contacts (< 3 A) allowed by the 
packing check was specified as 5, which removed about 
36 and 45 % of the grid points from the calculation for 
the test cases 1CBL and 3ECA, respectively. Perform- 
ing the packing check during the calculation with the 
FFT method lowered the background noise but it did not 
change the relative ranking of the peaks. The crystal for 
test case 1CBL has more compact packing, causing 
more mixing of the self and cross vectors. Conse- 
quently, the results for the 1CBL test case are inferior to 
those for 3ECA. The calculation by direct summation 
produced slightly better results for the 1CBL test case, 
although the computation time was significantly longer. 

6. Discussion 

This paper describes two applications of another form 
of the Patterson correlation function. Other applications 
of this function are possible as well. For example, (4) 
can be used as the basis of a rotation function. However, 
a fast way of evaluating this equation for many different 
sets of rotation angles needs to be developed to make 
this rotation function practical. 

The procedure presented here for the refinement of 
rotational parameters represents an alternative to those 
proposed earlier (Brtinger, 1990; Yeates & Rini, 1990). 
The methods are expected to be generally equivalent, 
although there may be applications where one method 



LIANG TONG 479 

Table 1. Summary o f  locked-translation-function test 
calculations 

Structure 
No. of C~ atoms 

per monomer 
Test ~ 
Peak no. 1 height b 
Peak no. 1 signal-to-noise c 
Peak no. 2 height 
Peak no. 2 signal-to-noise 
CPU time (min) d 

1CBL 3ECA 

146 326 
A B C A B C 

1000" 1000" 1000" 1000" 1000" 1000" 
5.60 7.38 7.72 6.51 9.92 10.03 
463 463 496 508 508 477 
2.52 3.41 3.82 3.28 5.04 4.78 

8 89 277 12 73 199 

(a) The three tests are: A calculation by FFT without packing check; B 
calculation by FFT with packing check; C calculation by direct 
summation with packing check. (b) The highest value of each 
locked translation function was scaled to 1000. When a packing check 
is not performed during the calculation, the position with the highest 
value may have packing problems and may be rejected by the packing 
check in the peak-search process. (c) The signal-to-noise is defined 
as (peak height-map average)/standard deviation. (d) All 
calculations were performed on a SGI Indigo R4000. * The correct 
solution. 

proves to be more advantageous than others. It can be 
seen that (4) is equivalent to the cross term in the least- 
squares error function of Yeates & Rini (1990). The 
contribution of crystallographic symmetry is included 
implicitly in the function proposed here as the summa- 
tion goes over all reflections, whereas that in the 
function of  Yeates & Rini (1990) goes over the unique 
ones. The intensity-based domain refinement (Yeates & 
Rini, 1990) also includes a term that radially dampens 
the Patterson maps. This will down-weight the noise 
due to the cross vectors and was shown to produce 
somewhat better results (Yeates & Rini, 1990). How- 
ever, the contribution of the cross vectors to (4) is 
expected to be small as the calculated Patterson map is 
based on a single molecule in the crystal unit cell and 
hence lacks any contributions from the cross vectors. 

Equation (4) does not consider the presence of NCS 
in the crystal, although it is relatively straightforward to 
modify it to utilize the NCS. The first term in (7), which 
is ignored during the calculation of the locked transla- 
tion function, actually gives the relevant expression for 
the refinement of rotational parameters in the presence 
of  NCS. 

Similar to the Patterson correlation refinement 
(Brfinger, 1990), the locked translation function as 
presented here can be re-formulated to be based on the 

correlation coefficient. The test calculations (Table 1) 
show that such a correlation coefficient needs to be 
evaluated by the FFT method to be practical. 

The method for the determination of the position of 
an assembly based on an atomic model for the monomer 
is similar to that described for the interpretation of a 
Patterson map in the presence of NCS (Tong & 
Rossmann, 1993). The self-vector search in the 
Patterson interpretation is equivalent to the locked 
translation function. This can be expected as both are 
based on the overlap of the self vectors. 

I thank Lynn Ten Eyck and Duncan McRee for 
making available routines for FFT calculation. 
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